
Inspecting and modifying virtual machines
with Red Hat Enterprise Linux 6.1

Richard W.M. Jones
Senior Software Engineer

Red Hat

rjones@redhat.com

Wednesday May 4th 2011

1 Introduction

libguestfs1 is a library, scripting language and a set of tools that let you look
into virtual machines and make changes to them without needing to boot
them up. “Inspection” is the process of getting a formal description of what’s
in a virtual machine, how it is configured, what software is installed, the
contents of the filesystem and Windows Registry and so on. “Modification”
here means making repeatable changes to these guests, to their configuration
files, filesystems and Registries, from programs and scripts.

Big advances have happened in libguestfs since an early version was added
to RHEL 6.0, and most of those changes will appear in RHEL 6.1. For a
start, RHEL 6.1 libguestfs is 4 or 5 times faster, so if you tried libguestfs in
RHEL 6.0 and were disappointed with the performance, then try RHEL 6.1.
Hundreds of individual features have been added, and we’re only going to be
able to show a handful of the most important features in the talk today.

libguestfs is now the basis for several important projects inside and out-
side Red Hat, including the Boxgrinder cloud image builder, at least one
proprietary ISP/cloud VM deployment system, and virt-p2v/virt-v2v which
my colleague Matthew Booth is going to talk about after me.

1http://libguestfs.org/

1



Red Hat thinks that managing these previously “opaque” disk images and
virtual machines is very important, and we want our customers to have the
best possible open source tools available. The libguestfs project was started
over two years ago and has had one or two full time developers working on
it ever since then. Here are some stats from the project:

24 command line tools
171 pages in the manual

over 300 API calls
555 automated tests run on each release

2,885 git commits (about 31
2

commits per day, including week-
ends and holidays)

313,247 lines of code

2 What is libguestfs?

libguestfs

Linux kernel

mkfs
LVM

fdisk

virt tools,
scripts,
your
programs

The stable API means future
versions of libguestfs won't
break your scripts or force
you to rewrite working code.

Supports disks,
disk images, VMs,
CDs, ISOs, USB,
memory cards.

kernel + tools = POWER!
We support everything that
Linux supports: ext4, btrfs,
GFS, UFS, LVM, GPT partitions.
It all just works out of the box.

dozens of existing
tools: guestfish,
virt-edit, virt-resize,
virt-v2v etc.
          +
your scripts
your programs
the command line
graphical tools

2



3 Timeline

libguestfs 1.2.7
May 17, 2010

guestfish -N option
write support in guestmount
virt-resize enhancements
virt-make-fs tool

4-5x performance improvement
core guest inspection API
support for encrypted guests
progress bars
copy-in and copy-out commands
hexedit command
revised command line syntax
virt-edit non-interactive editing (-e option)

some tools rewritten in C
virt-filesystems tool
virt-inspector supports Windows apps

virt-copy-in, virt-copy-out,
virt-tar-in, virt-tar-out tools
support for Windows drive letters
inspect live CDs
new event API
access live guests
virt-resize rewrite
enhanced graphical browser

the basis of RHEL 6.0

libguestfs 1.4.0
July 8, 2010

libguestfs 1.6.0
November 2, 2010

libguestfs 1.8.0
December 19, 2010

libguestfs 1.10.0
April, 2011

RHEL 6.1 comes from
1.7.17 + patches from

1.8.x series

RHEL 6.2 might
rebase to 1.10.x

3



4 Introducing guestfish

guestfish2 is a shell you can use to open up and modify disk images. You can
just open up any libvirt guest or disk image by doing:

# guestfish --ro -i -d RHEL60

Welcome to guestfish, the libguestfs filesystem interactive shell for

editing virtual machine filesystems.

Type: ’help’ for help on commands

’man’ to read the manual

’quit’ to quit the shell

Operating system: Red Hat Enterprise Linux Server release 6.0 (Santiago)

/dev/vg_rhel6brewx64/lv_root mounted on /

/dev/vda1 mounted on /boot

><fs> ll /

total 138

dr-xr-xr-x. 26 root root 4096 Apr 11 09:49 .

drwxr-xr-x 24 root root 4096 Apr 11 17:13 ..

-rw-r--r--. 1 root root 0 Apr 11 09:49 .autofsck

drwx------. 3 root root 4096 Sep 17 2010 .dbus

dr-xr-xr-x. 2 root root 4096 Nov 6 15:21 bin

dr-xr-xr-x. 5 root root 1024 Sep 18 2010 boot

drwxr-xr-x. 2 root root 4096 Jul 14 2010 cgroup

drwxr-xr-x. 2 root root 4096 Sep 17 2010 dev

[etc]

A note about those options:

--ro This means open the disk read-only: you don’t want to make any
changes to it. Opening a disk which is in use (eg. used by a running
VM) is unsafe unless you use this option.

-i This means “inspect” the disk image and mount up the filesystems
as they would be mounted if the guest was running. You can leave

2http://libguestfs.org/guestfish.1.html

4



out this option and instead look for the filesystems yourself using the
list-filesystems command.

-d This means open the named libvirt guest. You can get a list of libvirt
guests by doing virsh list --all. You can use the -a option to open
a disk image file or device directly.

There are hundreds of guestfish commands for reading and writing files,
listing directories, creating partitions, extending logical volumes and so on.
You can also use guestfish from shell scripts if you want to make repeatable
scripted changes to guests. A few useful commands include:

cat Display small text files.

edit Edit a file.

less Display longer files.

ll List (long) directory.

ls List directory.

mkdir Make a directory.

rm Remove a file.

touch Touch a file.

upload Upload a local file to the disk.

write Create a file with content.

The best place to start is the guestfish man page:

$ man guestfish

or by reading the webpage http://libguestfs.org/guestfish.1.html

guestfish doesn’t normally need root. The only time you need to run
guestfish as root is if you need root in order to be able to access the disk
images themselves. There are some better alternatives, such as adding users
to the “disk” group.

5



5 Introducing virt-rescue

virt-rescue3 is a good way to rescue virtual machines that don’t boot, or just
generally make ad hoc changes to virtual machines. It’s like a rescue CD for
virtual machines.

virt-rescue is a little different from guestfish in that you get an ordinary
shell and ordinary tools. However unlike guestfish, virt-rescue cannot be used
from shell scripts, so it’s not useful if you want to make repeatable changes
to lots of your guests.

You must not use virt-rescue on running VMs.
If you had a libvirt guest called “Fedora” then:

# virt-rescue -d Fedora

[lots of boot messages]

Welcome to virt-rescue, the libguestfs rescue shell.

Note: The contents of / are the rescue appliance.

You have to mount the guest’s partitions under /sysroot

before you can examine them.

><rescue> lvs

LV VG Attr LSize Origin Snap% Move Log Copy% Convert

lv_root vg_f13x64 -wi-a- 7.56g

lv_swap vg_f13x64 -wi-a- 1.94g

><rescue> mount /dev/vg_f13x64/lv_root /sysroot/

[ 107.912813] EXT4-fs (dm-0): mounted filesystem with ordered data mode.

Opts: (null)

><rescue> ls -l /sysroot/etc/fstab

-rw-r--r--. 1 root root 781 Sep 16 2010 /sysroot/etc/fstab

><rescue> vi /sysroot/etc/fstab

There is a lot more information about virt-rescue in the man page:

$ man virt-rescue

or you can read the manual online http://libguestfs.org/virt-rescue.

1.html

3http://libguestfs.org/virt-rescue.1.html

6



6 Introducing the other virt-tools

In the following sections I will be demonstrating some of the other virt tools
that come with RHEL 6.1. Here I’ll provide a quick overview of the tools
available.

guestfish Interactive and scriptable shell.

guestmount Mount filesystems from any guest or disk image on the host.

virt-cat Display a file from a guest.

virt-copy-in Copy files and directories into a guest.

virt-copy-out Copy files and directories out of a guest.

virt-df Display disk usage of a guest.

virt-edit Edit a file in a guest.

virt-filesystems Display the partitions, filesystems, logical volumes etc. in a guest.

virt-inspector The old RHEL 6.0 virt-inspector program. Use virt-inspector2 instead.

virt-inspector2 Inspect a guest and produce a report detailing the operating system,
version, applications installed and more.

virt-ls List a directory in a guest.

virt-make-fs Make a new filesystem.

virt-rescue Rescue mode for guests.

virt-resize Resize a guest.

virt-tar-in Copy files from a tarball into a guest.

virt-tar-out Copy files out of a guest into a tarball.

virt-win-reg Display and edit the Windows Registry in a guest.

To get more information about any command, read the manual page.
Type (for example):

$ man virt-cat

or see the upstream website: http://libguestfs.org/

7



7 Exercise: charting disk usage with virt-df

The virt-df utility4 displays disk usage for virtual machines. Normally the
output looks like the ordinary “df” command:

# virt-df -h

Filesystem Size Used Available Use%

cooking:/dev/sda 3.0G 1.5G 1.3G 52%

cooking:/dev/sdb 128M 95M 26M 75%

database:/dev/sda 3.0G 733M 2.1G 25%

database:/dev/sdb 128M 95M 26M 75%

database:/dev/sdc 49G 25G 22G 51%

However you can also get virt-df to produce comma-separated values
(CSV) output which is useful for monitoring and tracking disk usage. CSV
can be imported directly into many databases and spreadsheet programs.

On my production server I capture virt-df CSV output every day using a
simple cron job /etc/cron.daily/local-virt-df:

#!/bin/bash -

date=$(date +%F)

virt-df --csv > /var/local/virt-df.$date

I then import these files into a spreadsheet which allows me to chart disk
usage and look for trends. Figure 1 on page 13 charts a virtual machine over
a five month period.

8 Exercise: using guestfish -N

In this exercise we will use the guestfish “-N” option to create a new disk
image from scratch containing some files and directories. For the content I’m
going to use a source tarball of libguestfs5.

To make this exercise more exciting I’m going to specify that I want my
files stored in an LVM logical volume inside the disk image, and I want to

4http://libguestfs.org/virt-df.1.html
5Source code for libguestfs is available from http://libguestfs.org/download/ or

for Red Hat subscribers from RHN.

8



format my filesystem using the smart new btrfs6 filesystem. The files from
the tarball are about 5 MB in size, so I’m going to choose a disk image size
which is easily large enough to store them with plenty of space: 500 MB! It
turns out that the minimum size for a btrfs filesystem is 256 MB, and both
LVM and btrfs impose a large overhead.

In effect my disk image will be wrapped up in several layers as in this
diagram:

Disk image (raw file)

MS-DOS partition
LVM physical volume

LVM volume group ("VG")
LVM logical volume ("VG/LV")

btrfs filesystem

/libguestfs-1.9.18/
/libguestfs-1.9.18/README
/...

files and
directories

The guestfish “-N” option below creates the complex nested filesystem
structure7. Notice that you do not need to run this command as root –

6https://secure.wikimedia.org/wikipedia/en/wiki/Btrfs
7For more information about use of the “-N” option, type: guestfish -N help

9



creating disk images is something that everyone can do.

$ guestfish -N lvfs:/dev/VG/LV:btrfs:500M

><fs> list-filesystems

/dev/VG/LV: btrfs

><fs> mount-options "" /dev/VG/LV / Mount the filesystem so we can write to it

><fs> df-h Notice that 96 MB has been lost!

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/VG-LV 496M 56K 404M 1% /sysroot

><fs> tgz-in libguestfs-1.9.18.tar.gz / Unpack the tarball into the new filesystem

><fs> ll /

total 8

dr-xr-xr-x 1 root root 34 Apr 12 14:08 .

drwxr-xr-x 24 500 500 4096 Apr 12 14:08 ..

drwxrwxr-x 1 root root 1076 Apr 9 22:25 libguestfs-1.9.18

><fs> exit

$ file test1.img

test1.img: x86 boot sector; partition 1: ID=0x83, starthead 1,

startsector 64, 1023873 sectors, code offset 0xb8

The output disk image is in test1.img. How do you prove that it contains
a filesystem? One way is to open it again with guestfish:

$ guestfish -a test1.img -m /dev/VG/LV

Another way is to take this disk image and attach it to a virtual machine.

9 Exercise: find vulnerable versions of Fire-

fox

In this exercise we will use virt-inspector8 to find out if any vulnerable ver-
sions of Firefox9 are installed in Windows guests. At the time of writing, any

8This example uses the Fedora virt-inspector program. In RHEL 6.1 this program is
called virt-inspector2 so you need to change any references to “virt-inspector” to “virt-
inspector2”. RHEL 6.1 ships with a known bug: it is not able to list 32 bit applications
installed in a 64 bit Windows guest (using the WOW64 emulator). A fix for this bug will
be included in RHEL 6.2. (RHBZ#692545)

9https://www.mozilla.org/security/known-vulnerabilities/

10



version of Firefox < 3.6.16 was vulnerable, so we’d like to scan our Windows
guests to check this.

First run virt-inspector and have a look at the output:

# virt-inspector -d WindowsGuest

<operatingsystems>

<operatingsystem>

<name>windows</name> it’s a Windows guest

<arch>i386</arch> it’s 32 bit

<product name>Windows 7 Enterprise</product name>

<major version>6</major version> ‘‘6.1’’ = Windows 7 -- blame Microsoft!

<minor version>1</minor version>

...

<applications> the list of applications starts here

<application>

<name>Mozilla Firefox (3.6.12)</name>

<display name>Mozilla Firefox (3.6.12)</display name>

<version>3.6.12 (en-GB)</version>

...

</application>

</applications>

</operatingsystem>

</operatingsystems>

One way to extract and process XML documents is to use W3C standard
XPath expressions. In this example I will use a short Python program with

11



the libxml2 library to find vulnerable versions of Firefox:

#!/usr/bin/python

import libxml2, re, sys

from distutils import version

Read the XML piped from standard input

doc = libxml2.readFd (sys.stdin.fileno(), None, None, 0)

Use XPath to find all <application> nodes

ctx = doc.xpathNewContext()

res = ctx.xpathEval ("//application")

for node in res:

Use XPath to find the <name> and <version> within current <application> node

ctx.setContextNode(node)

name = ctx.xpathEval ("./name//text()")[0]

ver = ctx.xpathEval ("./version//text()")[0]

Python StrictVersion lets me compare version numbers

ver = version.StrictVersion (str(ver).split(’ ’)[0])

if re.search ("Mozilla Firefox", str(name)) and \
ver < version.StrictVersion ("3.6.16"):

print "Vulnerable version of Firefox found (%s)!" % ver

Putting this together gives:

# virt-inspector -d WindowsGuest | ./vulnerable.py

Vulnerable version of Firefox found (3.6.12)!

12



Figure 1: Disk usage of a virtual machine over the 5 months starting with
installation. Notice the spikes when the VM was first installed, followed by
a broad trend of very gradually increasing disk usage.

13


